基幹システム再構築事例からみる EAの 取り 組み

2004年 7月27日 日本電気株式会社

NECが考えるEAとは? ■ メインフレームマイグレーション ■ 基幹システム再構築事例 ■ まとめ

EAとはどのような活動なのでしょうか? NECが考えるEAの活動をご説明します。

EAとはどんな活動か

Enterprise Architectureとは、 企業の「ビジネスとITを共に改善するための枠組み」

- ビジネスとITの"今"をモデルに描き、情報共有する。
- ~ 経営者、事業部門、システム部門でそれぞれの立場で 理解できるようにする!
- 事業環境を踏まえ、ビジネスとITの"あるべき姿"を描く。 ビジネスとITの"今"と"あるべき姿"のギャップを認識し 次の打ち手を策定する。
- ~ 経営者、事業部門、システム部門が納得できる「次の像」 を決める。

順序を決め、次の打ち手を実行する。

EA推進体制やルールを取り決め、を繰り返す。

~ 継続的な改善活動として定着させる!

企業のビジネスとITの全体最適化を絶えず推進

M Enterprise Architecture活動

全部の取り組みをやる必要はない。 ~企業にとって最も重要なところを選んで取り組み、順次 拡大していくのが、順当なやり方 (METAアナリスト他のレコメンド)

関係者によって分かりやすい"モデル"を作ることがカギ

EAの実践によりご提供するもの

最適化プラットフォームという目的のために

技術体系からEAに着手する、という考え方があります。

メインフレームマイグレーション

最適化プラットフォームという考え方のもとでは、 しばしばメインフレームをどうするかという課題が 議論されます。

NECでは、将来を見据えて、まずメインフレームの資産を分析することをお勧めしています。

システムマイグレーションのパターン

システムマイグレーションには、3パターンがあります。

サブシステム単位に資産分析し各パターンを、決定する必要があると考えています。

RE-HOST:資産分析/移行サービス

分析、移行作業ともにお客様と、オープンサーバ技術の専門家と の共同作業により、迅速かつ確実な移行分析、資産移行を実施。

<u>RE-HOST:マイグレーションの比較</u>

コンバージョン方式とエミュレーション方式の特長

移行方式	移行方針	メリット・デ	゙゙メリット
コンバージョ ン方式	・ソースをオープン基盤にコンバート ・ビジネスロジック / 運用形態を維持	メリット	 ・真のオープン化を実現するため、 柔軟なシステム構築、拡張が可能
完全移 行型		デメリッ ト	・ツールによる変換後、手修正を要 する可能性あり
エミュレーショ ン方式	· · · · · · · · · · · · · · · · · · ·	メリット	・移行工数・コスト少
		デメリッ ト	·移行後もソースはオリジナルのま ま
暫定移行型			・独自環境のため、拡張性・柔軟性 に欠ける面がある
			・エミュレータソフトのライセンスおよ び保守費用が発生

NECはコンバージョン方式を推奨

お客様のメインフレーム資産はどちらか?

企業にとって普遍的なノウハウ / 価値の集積されたコア コンピタンスシステム

すでに事業環境に合わない、見直しが急務なレガシーシ ステム

オープン技術による再構築 (RE-BUILD)

再構築(RE-BUILD)事例 : 2例 資産移行(RE-HOST)事例 : 2例 をご紹介いたします。

カルチュア・コンビニエンス・クラブ様

■業務内容

▶FC本部基幹業務システム「SPEED(スピード)」(下図参照)

■<u>オープン化の背景</u>

▶レンタルと物販ふたつの異なる事業によって、別々のPOSシステム、異なるアーキテクチャーとネットワークプロトコルを持つシステムが基幹システム周辺に増加。

カルチュア・コンビニエンス・クラブ様

■<u>システム移行</u>

▶1985年会社設立と同時に導入され、順次更新/拡張されてきたACOS-4システム をNX7000とストレージによるフルオープンシステム(OMCS)で再構築

■<u>システム要件</u>

- ▶情報系システム(TSUTAYA NAVI)との容易な連携。
- ▶1日あたり500万件の大量データ処理を可能にする高性能。
- ▶業務停止を起こさない高信頼性。
- ▶店舗数の増大や業務拡張への柔軟な対応。
- ▶新規事業立ち上げに対する柔軟な(必要なシステム変更や追加)対応。

■<u>導入効果</u>

▶コスト削減

▶毎月定期出力される膨大な量の帳票類を半分以下に削減。

♪システム運用・保守のアウトソーシングによる運用コスト削減。

社員をクリエイティブな業務に集約。

▶加盟店への指導力強化

◆TOLやTSUTAYA NAVIとの連携により、約1800万人の会員の嗜好/動向の 分析が可能。

▶情報活用

 ・情報システム部門が介在することなく、一般社員が必要な情報を入手し分析 が可能。

 Empowered by Innovation

弊社社内システムのオープン化

汎用機で構築されていたシステムを オープンシステム(OMCS)で刷新

弊社営業システム(BEAT)

弊社営業システムリニューアルの必然性

NECが直面した市場環境の変化

企業革新への取り組み 市場変化への即応、収益力の向上、競争力強化

ハード中心からソフト・サービス中心へ メーカーからソリューションプロバイダーへ 協力ソフトベンダーのグローバル化

生産革新への対応 ライン生産からPULL型生産へ、見込み生産からBTOへ

Hub&NetによるNEC基幹システムの将来像

PJの目的

当初、全面リニューアル(再構築)を目指していたが、早期にACOS-HW 資産をなくし、オープンシステムの**最新テクノロジーを**享受するためにオー プンシステムへの移行を早く安全に行う。 期間・納期が最優先。

PJの基本方針

- 1. 現行Business Processを活かし、移行リスクを下げる
- 2. ACOS6資産を活用し、期間短縮
- 3. 移行ツールを活用し、自動コンバージョンにより信頼性・生産性を上げ る
- 客先がPJリーダをし、コンバージョン、テスト、ユーザ教育を主体的に 行なう
- 5. 移行中も現在のサービスレベルを維持し、移行後一層向上させる
- 6. オープンシステム構築、ツール開発、技術支援、運用支援、教育には 外部先進企業を活用する

Empowered by Innovation

NE

メインフレームからオープン系サーバへの移行形態

項目	現状	移行後
ソフトウェア	ACOS 6	HP-UX 11.i v2
ハードウェア	PX7900	NX7700(IA64) + i-Storage
データベース	ADBS, RIQS	Oracle
ファイル	標準ファイル、UFASファイル	順編成ファイルはrefam/E 直編成ファイルはrefam/E or Oracle9i 索引順編成ファイルはC-ISAM or Oracle9i UFASファイルはOracle9i
OLTP	TPS, TDS	TPBASE(+tnETOS)
言語	COBOL/S、COBOL JCL	COBOL85 UNIX標準シェル
画面	DDA/SCREEN	TPBASE画面

住友スリーエム様

■ <u>オープン化の背景</u>

- グローバル化(対外的なコネクティブティ向上)
 世界60カ国における3M同士のネットワークなどを考えてデファクト技術 採用
- ▶ BPR推進(様々なフロント業務をWeb上で行いたい)
- 汎用機ベースのシステムは、アプリケーションの手直しの時間がかかる。 システム部門担当者がメンテナンスに追われるなどの課題。

■ <u>システム移行</u>

- 納期を最優先に検討。
 - コンバートツールを活用してコンバージョン(既存の業務プロセスや機能、資産をそのまま継承しながら、オープンプラットフォームへ移行。) エンドユーザーはハードやプラットフォームの変更を意識せずにこれまでと同じ機能やサービスが利用可能エンドユーザーはハードやプラットフォームの変更を意識せずにこれまでと同じ機能やサービスが利用可能
- 最適なコストで高可用性を実現するユニークなバックアップシステム
 - ↑ 待機用サーバを置かずにNX70004台の稼動しているサーバ同士でバックアップする「循環サイクル型4ノードクラスタ」システム。OMCS構築ノウハウが結集した「SystemGlobe」をはじめとするVALUMOウェア製品群によって実現。

経営環境の変化に即応するためにメイン フレームのシステムをオープン化。 可用性確保のためのクラスタシステムの 待機系サーバ導入はサーバの利用効率 が悪い。

<u>NX7000x4台のクラスタ構成</u> DB(1台)、バッチ(2台)、TPモニタ(1台)で4台のサーバ がフル稼働しており、資源を効率的に活用できる。 障害が発生した場合、別の1台が2台分の処理を行う。

NX7000 × 4台クラスタシステム で高可用性を実現 国内初 4台全現用システム

<従来>

メインフレームシングルシステム 障害極小化、再立上げ:1時間

<VALUMO適用後>

SystemGlobe + NX7000クラスタシステム サーバ切替え:約5分

住友スリーエム様

■<u>導入効果</u>

▶定性効果

- システム部門担当者の負担が軽減され、より生産性の高い業務に集約。
- ▶ クライアントから基幹システムに容易にアクセスが可能。
- ✤ Webを活用したマルチタスクが実行可能。
- ル 処理スピードの向上により、プログラム開発が速く進む。
- ◆ アプリケーションの運用環境が担当者にタイムリーに伝わる。
- ▶定量効果
 - 耐障害性向上
 (障害時の再立ち上げ時間)
 汎用機シングルシステム
 :平均1時間
 新システム
 :約5分

■ さて、今一度 EAに立ち返ってみます。

MF、C/SからWebComputingへ(4~5年前のこと)

「全体見通しの良さ」、「管理のしやすさ」が"カギ"になる。

